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ABSTRACT

The age matching model has recently been shown to predict correctly the
luminosity L and g − r color of galaxies residing within dark matter halos. The
central tenet of the model is intuitive: older halos tend to host galaxies with
older stellar populations. In this paper, we demonstrate that age matching also
correctly predicts the g − r color trends exhibited in a wide variety of statistics
of the galaxy distribution for stellar mass M∗ threshold samples. In particular,
we present new measurements of the galaxy two-point correlation function and
the galaxy–galaxy lensing signal ∆Σ as a function of M∗ and g − r color from
the Sloan Digital Sky Survey, and show that age matching exhibits remarkable
agreement with these and other statistics of low-redshift galaxies. We describe
how age matching is a specific example of a larger class of Conditional Abundance
Matching models (CAM), a theoretical framework we introduce here for the first
time. CAM provides a general formalism to study correlations at fixed mass
between any galaxy property and any halo property. The striking success of our
simple implementation of CAM provides compelling evidence that this technique
has the potential to describe the same set of data as alternative models, but with
a dramatic reduction in the required number of parameters. CAM achieves this
reduction by exploiting the capability of contemporary N-body simulations to
determine dark matter halo properties other than mass alone, which distinguishes
our model from conventional approaches to the galaxy-halo connection.

Key words: cosmology: theory — dark matter — galaxies: halos — galaxies:
evolution — galaxies: clustering — large-scale structure of universe

1 INTRODUCTION

Extensive effort has been put forth to understand how
the star formation activity in galaxies maps to dark mat-
ter halos in a cosmological context, typically via galaxy
color (Zehavi et al. 2005, 2011; Skibba & Sheth 2009;
Tinker & Wetzel 2010; Wang et al. 2007; Krause et al.
2013; Gerke et al. 2012; Masaki et al. 2013; Hearin &
Watson 2013). Color is a commonly employed observable
as it is correlates well with the star formation history
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of a galaxy: blue galaxies exhibit ongoing star forma-
tion, and conversely, red galaxies are typically not ac-
tively forming stars. Observations have long shown that
redder galaxies preferentially occupy more dense environ-
ments, while bluer galaxies tend to reside in underdense
regions (Balogh et al. 1999; Blanton et al. 2005; Wein-
mann et al. 2006, 2009; Peng et al. 2010, 2012; Carollo
et al. 2012). Additionally, there exists a clear bimodal-
ity in the distribution of galaxy colors, with distinct red
(ellipsoidal) and blue (disky) populations (Blanton et al.
2003; Baldry et al. 2004; Blanton et al. 2005; Wyder et al.
2007). This segregation between galaxy populations is al-
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2 Hearin et al.

ready in place at z ∼ 1 (Bell et al. 2004; Cooper et al.
2006, 2012) and possibly extends out to z ∼ 3 (Whitaker
et al. 2011).

Recently, Hearin & Watson (2013) introduced age
distribution matching (or simply age matching for
brevity), a new theoretical formalism for connecting
galaxies to halos as a function of their color and lumi-
nosity. Age matching is rooted in the popular abundance
matching technique, wherein the halo maximum circular
velocity Vmax (or mass) is in monotonic correspondence
with luminosity L (or stellar mass). This simple, yet pow-
erful approach has been employed to describe a variety of
observed galaxy statistics (e.g., Kravtsov et al. 2004; Vale
& Ostriker 2004; Tasitsiomi et al. 2004; Vale & Ostriker
2006; Conroy et al. 2006; Conroy & Wechsler 2009; Guo
et al. 2010; Simha et al. 2010; Neistein et al. 2010; Watson
et al. 2012; Reddick et al. 2012; Rodŕıguez-Puebla et al.
2012; Hearin et al. 2012). However, traditional abundance
matching does not capture well-established features in
the galaxy distribution, such as color bi-modality, that
reflect the complexity in the physics of galaxy evolution.

To that end, Hearin & Watson (2013) (hereafter Pa-
per I) showed that by extending the traditional abun-
dance matching formalism to consider an additional halo
property beyond Vmax, the observed spatial distribution
of galaxies as a function of luminosity and color could be
accurately reproduced. Specifically, the authors consid-
ered the redshift, dubbed zstarve, that correlates with the
epoch at which the star formation in the galaxy is likely
stifled, ultimately leading to the quenching of the galaxy.
By using merger trees to map the full mass assembly his-
tory (MAH) of halos, a halo’s zstarve value is determined
by whichever of the following three events happens first in
its MAH: (1) the epoch a halo accretes onto a larger halo,
thus becoming a subhalo, (2) the epoch a halo reaches
a characteristic mass1, and (3) the epoch a halo transi-
tioned from the fast- to slow-accretion regime. Under the
simple assumption that zstarve correlates with g− r color
at fixed luminosity, the age matching technique was able
to accurately predict color-dependent clustering in the
Sloan Digital Sky Survey (SDSS: York et al. 2000; Abaza-
jian et al. 2009) and a variety of galaxy group statistics.
The success of the model supported the idea that the
assembly history of galaxies and halos are correlated.

The central tenet of age matching is a simple one:
older galaxies live in older halos. Of course, other halo
proxies beyond zstarve can (and should) be investigated,
thus age matching can be thought of as a specific imple-
mentation of a more general formalism we will call Con-
ditional Abundance Matching or CAM. As we lay out in
detail in § 4.3, CAM provides the framework for prob-
ing correlations between any galaxy property (e.g., color,
star formation rate, morphology) and any additional halo
property. For the purposes of this paper, we aim to test
the predictions of age matching against a battery of new
observational measurements from SDSS: including, stel-
lar mass-dependent clustering and galaxy-galaxy lensing

1 Hearin & Watson (2013) tried several values for the char-
acteristic mass and found 1012h−1M" to be most compatible
with the data

as a function of color as well as galaxy group statistics
based on an SDSS galaxy group catalog.

The paper is laid out as follows. In § 2 we discuss
the data and new measurements incorporated through-
out this work. In § 3 we discuss the simulation, halo cat-
alogs, and merger trees. In § 4 we give an overview of our
general methodology, including a description of how our
SDSS–based mock catalog is constructed as well as an
analytic presentation of CAM. A brief discussion of how
we make predictions using CAM for various galaxy statis-
tics is given in § 5. Results are presented in § 6, followed
by a discussion and summary in § 7 & § 8, respectively.
Throughout this work we assume a flat ΛCDM cosmo-
logical model with Ωm = 0.27 and all stellar masses are
quoted with h = 1.

2 DATA AND MEASUREMENTS

2.1 SDSS Galaxy Sample

Our baseline galaxy catalog is a volume-limited sample
of galaxies taken from the Main Galaxy Sample of Data
Release 7 (Abazajian et al. (2009), DR7 hereafter) of
SDSS. This is the DR7 update of the DR3 sample used
in Berlind et al. (2006), to which we refer the reader
for details. The effective volume of this subsample is
Veff = 5.8 × 106h−3Mpc3. These galaxies span the red-
shift range 0.02 ≤ z ≤ 0.068; the upper redshift bound
was determined by a completeness requirement in r-band
absolute magnitude Mr − 5 log h < −19, where Mr refers
to Petrosian magnitude measurements. For convenience,
we refer to this catalog as our “Mr19” catalog.

Stellar masses were taken from the
MPA-JHU catalog, publicly available at
http://www.mpa-garching.mpg.de/SDSS/DR7. The
stellar masses in this catalog were estimated using the
kcorrect code of Blanton & Roweis (2007), assuming
a Chabrier IMF (Chabrier 2003). We study properties
of galaxy samples constructed with stellar mass cuts at
log10(M∗) > [9.8, 10.2, 10.6] with stellar masses quoted in
h−2M". We refer to these as our M9.8

∗ catalog, our M10.2
∗

catalog, and our M10.6
∗ catalog, respectively. Each of

these three stellar mass-limited samples were constructed
from the Mr19 catalog. Using a Mr − 5 log h < −18
volume-limited catalog constructed in the same fashion
as our Mr19 sample, we estimate that the M9.8

∗ sample
is ∼ 98% complete in stellar mass.

For several of the statistics explored in this paper, we
have divided our galaxy samples into “red” and “blue”
subsamples. To do so, we adopt the convention of van
den Bosch et al. (2008), separating the galaxies with the
following stellar mass-dependent cut:

g − r = 0.76 + 0.15
[
log(M∗/(h

−2M")− 10.0
]
. (1)

2.2 Clustering Measurements

We measure the projected correlation function of these
stellar mass threshold and color split samples in a way
similar to Zehavi et al. (2011). We first count data-
data, data-random, and random-random pairs as a func-
tion of line-of-sight separation π and projected separa-
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tion rp in 15 logarithmically spaced bins of rp in the
range 0.1 − 20 h−1Mpc. We then use the Landy & Sza-
lay (1993) estimator to evaluate the correlation function:
ξ(rp, π) = (DD− 2DR + RR)/RR. We use a random cat-
alog with one million points to measure DR and RR in
order to ensure that Poisson errors in the random counts
do not dominate the error budget. Next we integrate
along the line-of-sight to compute the projected corre-
lation function wp(rp). Specifically, we integrate out to
π = 40 h−1Mpc, which is sufficient to remove most of
the effect of redshift distortions. Finally, we compute er-
rors in our measurements by jackknife resampling from
50 equal-area regions on the sky. Our measured correla-
tion functions and error estimates for the full sample, as
well as the red/blue samples, are listed in Tables 1-3.

2.3 Galaxy Group Sample

We construct a catalog of galaxy groups from the M9.8
∗

galaxy sample described in § 2.1 using the group-finder
introduced in Berlind et al. (2006), to which we refer
the interested reader for details. Briefly, this algorithm
parses galaxies into groups via a friends-of-friends algo-
rithm with different linking lengths in the transverse and
line-of-sight direction; values of the linking lengths were
chosen to optimize completeness and purity of the group
sample. The algorithm has no regard for galaxy prop-
erties beyond their angular positions and redshifts. We
define each group’s central galaxy to be the group mem-
ber with the largest stellar mass,2 and satellite galaxies
to be the remaining group members.

2.4 Galaxy-Galaxy Lensing Measurements

We compute the lensing signal in 23 logarithmic radial
bins from 0.2 to 2 h−1Mpc as a weighted summation over
lens-source pairs, using the following estimator:

∆Σ(R) =

∑
ls wlsγ

(ls)
t Σ(ls)

c

2R
∑

ls wls
, (2)

where γt is the tangential shear, and the critical surface
density Σ(ls)

c is a geometric factor,

Σ(ls)
c =

c2

4πG
Ds

DlDls(1 + zl)2
. (3)

Here, Dl and Ds are angular diameter distances to the
lens and source, Dls is the angular diameter distance be-
tween the lens and source, and the factor of (1 + zl)

−2

arises due to our use of comoving coordinates. The fac-
tor of 2R arises due to our definition of ellipticity and
the shear responsivity R is approximately 1 − e2 ≈ 0.87
(Bernstein & Jarvis 2002). The weights are assigned ac-
cording to the error on the shape measurement via

wls =
(Σ(ls)

c )−2

σ2e + σ2SN

(4)

2 See Skibba et al. (2011) for a discussion of the complicating
factor that central galaxies are not always the brightest group
members.

where σe is the estimated shape error per component and
σSN is the intrinsic shape noise per component, which
was determined as a function of magnitude in Mandel-
baum et al. 2005, figure 3. The factor of Σ−2

c converts
the shape noise in the denominator to a noise in ∆Σ; it
down-weights pairs that are close in redshift, so that we
are weighting by the inverse variance of ∆Σ.

There are several additional procedures that must be
done when computing the signal (see Mandelbaum et al.
2005 for details). First, the signal computed around ran-
dom points must be subtracted from the signal around
real lenses to eliminate contributions from systematic
shear. Second, the signal must be boosted, i.e., multi-
plied by B(R) = n(R)/nrand(R), the ratio of the weighted
number density of sources around real lenses relative to
the weighted number density of sources around random
points in order to account for the dilution of the lensing
signal due to sources that are physically associated with
a lens, and therefore not lensed.

To determine errors on the lensing signal and boost
factors, we divide the survey area into 200 bootstrap sub-
regions and generate 500 bootstrap-resampled datasets.

The source galaxy catalogue used here was intro-
duced and described in Reyes et al. (2012), which is
an improved version of the catalogue from Mandelbaum
et al. (2005). The full sample covers an area of 9243 deg2,
containing over 39 million galaxies from SDSS DR8. For
the lensing calculation in this work, we used a subset
of that area that overlaps with the lens galaxy sample
(around 8% of the parent galaxy sample was in areas
without source galaxy shape measurements, so were ex-
cluded from the calculation).

The shape measurements utilise a method of PSF-
correction known as re-Gaussianization (Hirata & Seljak
2003). Re-Gaussianization is a method based on the use
of the moments of the image and of the PSF to correct
for the effects of the PSF on the galaxy shapes. However,
unlike many other moments-based corrections, it includes
corrections for the non-Gaussianity of the galaxy profile
(Bernstein & Jarvis 2002; Hirata & Seljak 2003) and of
the PSF (to first order in the PSF non-Gaussianity). For
more details, we refer the reader to § 4 and Appendices A
& B of Reyes et al. (2012) and Mandelbaum et al. (2005).

3 SIMULATION AND HALO CATALOGS

The foundation of our mock galaxy catalogs is the Bol-
shoi N−body simulation (Klypin et al. 2011). With a
force resolution of ε = 1 h−1kpc, the simulation solves
for the evolution of 20483 collisionless particles in a
ΛCDM cosmological model with Ωm = 0.27, ΩΛ =
0.73, Ωb = 0.042, h = 0.7, σ8 = 0.82, and ns =
0.95. The periodic box of Bolshoi has a side length of
250h−1Mpc,; each particle has mass of mp & 1.9 ×
108 M". The simulation was run with the Adaptive Re-
finement Tree Code (ART; Kravtsov et al. 1997; Gott-
loeber & Klypin 2008). Snapshots and halo catalogs are
available at http://www.multidark.org. We refer the
reader to Riebe et al. (2011) for additional information.

To construct our mocks, we use ROCK-
STAR merger trees and halo catalogs (Behroozi
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et al. 2013a,b), which are publicly available at
http://hipacc.ucsc.edu/Bolshoi/MergerTrees.html.
ROCKSTAR identifies and tracks halos in phase-space,
and is capable of resolving Bolshoi halos and subhalos
down to Vmax ∼ 55km s−1. Halo masses were calcu-
lated using spherical overdensities according to the
redshift-dependent virial overdensity criterion of Bryan
& Norman (1998).

4 MODEL

We use a two-phase algorithm to assign stellar mass and
g − r color to our halos and subhalos in the halo cata-
log. Our implementation is identical to that in Paper I,
except with stellar mass M∗ replacing r-band absolute
magnitude. We sketch this algorithm in § 4.1 and § 4.2,
and refer the reader to Paper I for further details. In § 4.3
we describe how the age matching technique is a special
case of a more general class of CAM models, and provide
an analytical formulation of CAM.

4.1 Stellar Mass Assignment

We use the abundance matching technique to assign stel-
lar masses to halos and subhalos. This technique is widely
used throughout the literature, and so we limit ourselves
here to a brief sketch of the essential features.

A halo’s maximum circular velocity is defined as

Vmax ≡ Max
{√

GM(< r)/r
}
, where M(< r) is the

mass interior to the halo-centric distance r. Abundance
matching requires that the observed cumulative abun-
dance of galaxies as a function of stellar mass, Ng(> M∗),
is equal to the cumulative abundance of (sub)halos with
circular velocities larger than Vmax, Nh(> Vmax). This
requirement uniquely determines a monotonic relation-
ship between M∗ and Vmax; we use this monotonic rela-
tion to paint stellar masses onto every (sub)halo in the
z = 0 Bolshoi halo catalog.

To carry out the abundance matching, we use the
halo property Vpeak, the largest value of Vmax the halo
ever attains throughout its assembly history (Reddick
et al. 2012; Behroozi et al. 2013). We model stochasticity
between stellar mass and Vpeak in the exact same fash-
ion described in detail in Appendix A of Hearin et al.
(2012), which results in uniform scatter in stellar mass of
∼ 0.15dex at fixed Vpeak, a level of scatter that is consis-
tent with that found in a variety of other studies (More
et al. 2009; Reddick et al. 2012; Hearin et al. 2012).

4.2 Color Assignment

After assigning stellar masses to mock galaxies, we pro-
ceed to the second phase of our algorithm, in which we
assign g − r colors. First, we bin the mock and SDSS
galaxies by stellar mass, using ten logarithmically spaced
bins spanning the range of both samples.3 The g− r col-
ors of the SDSS galaxies in each stellar mass bin empiri-

3 We have performed a variety of explicit tests to verify that
our results are not sensitive to our bin width.

cally define the probability distribution PSDSS(g−r|M∗).
For the N mock galaxies in each stellar mass bin, we ran-
domly draw N times from PSDSS(g−r|M∗), rank-ordering
each bin’s draws, reddest first. We assign these colors to
the mock galaxies in the corresponding stellar mass bin
after first rank-ordering these N mock galaxies by the
property zstarve (defined below), largest first.

After carrying out the above procedure in each stel-
lar mass bin, the g−r distribution of the mock galaxies is
in exact agreement with the data, by construction. This
agreement is illustrated in the top left and bottom pan-
els of Fig. 1. Note that the rank-ordering has no impact
on the agreement between the observed and mock color
PDFs. The only effect of the rank-ordering is to intro-
duce, at fixed stellar mass, a correlation between galaxy
color and the epoch in a halo’s MAH presumed to be
linked to the stifling of star formation, zstarve.

Three characteristic epochs in the main progenitor
history of a halo determine its zstarve value:

1. zchar : The first epoch at which halo mass exceeds
a characteristic mass of Mchar = 1012h−1M". For halos
that never attain this mass, zchar = 0.

2. zacc : For subhalos, this is the epoch after which the
object always remains a subhalo. For host halos, zacc = 0.

3 zform : We follow Wechsler et al. (2002) in our defi-
nition of the formation epoch of a halo, using their halo
concentration-based proxy for halo age4. This identifies
the redshift at which the halo transitions from the fast-
to slow-accretion regime, and the circular velocity Vmax

of the halo plateaus.

After computing each of these three characteristic epochs,
we define the redshift of starvation:

zstarve ≡ Max {zacc, zchar, zform} . (5)

For details concerning how exactly to calculate zstarve
from halo merger trees, we refer to the appendix of Paper
I.

4.3 Analytical Formulation of CAM

Age matching admits a relatively simple analytical de-
scription that makes clear why we consider our model to
be a specific case of a larger class of CAMmodels. We first
consider the analytical formulation of traditional abun-
dance matching to highlight this connection.

The basic outcome of the abundance matching pre-
scription is to determine P (M∗|Vmax), the probability
that a (sub)halo with circular velocity Vmax hosts a
galaxy with stellar mass M∗. In the absence of scat-
ter between Vmax and M∗,

5 abundance matching treats
P (M∗|Vmax) as a delta function centered at the value
Vmax(M∗), the mean circular velocity of the halo of
a galaxy with stellar mass M∗. To see how the map

4 We use the z = 0 concentration for host halos, and the
concentration at the time of infall for subhalos.
5 See Behroozi et al. (2010) for a discussion of the analytical
formulation of abundance matching in the presence of scatter.
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Vmax(M∗) is determined analytically, let dnh/dVmax de-
note the abundance of dark matter (sub)halos as a func-
tion of Vmax, and dng/dM∗ the observed stellar mass
function (SMF). Then the cumulative abundances are
given by

Nh(> Vmax) =

∫ ∞

Vmax

dV′
max

dnh

dV′
max

(6)

Ng(> M∗) =

∫ ∞

M∗

dM ′
∗
dng

dM ′
∗

(7)

In the absence of scatter, traditional abundance
matching assumes thatM∗ and Vmax are in perfect mono-
tonic correspondence in such a way that the cumulative
abundances agree at all stellar masses. For any value of
Vmax, this can be accomplished analytically by simply
finding the zero of the following function

FVmax(M∗) ≡ Nh(> Vmax)×
dVmax

dM∗
(8)

− Ng(> M∗),

where dVmax/dM∗ is the Jacobian of the map Vmax(M∗).
In CAM, we seek to specify a more compli-

cated probability distribution function (PDF),
P (M∗, c|Vmax, Xhalo), the probability that a galaxy
of stellar mass M∗ and color c resides in a halo with
circular velocity Vmax and an additional halo property
Xhalo, where Xhalo = zstarve in the case of age match-
ing. We begin by making the following assumption of
separability:

P (M∗, c|Vmax, Xhalo) = P (M∗|Vmax)×P (c|Vmax, Xhalo).
(9)

We compute the first factor on the right hand side
of Eq. 9 by using traditional abundance matching to de-
termine Vmax(M∗) (and hence P (M∗|Vmax)), so that we
may piggyback on the well-known successes of this simple
approach to galaxy-halo modeling. However, this is not a
necessary feature of age matching; one may instead wish
to use, for example, a conditional stellar mass function
approach to paint stellar masses onto halos.

The second factor on the right hand side of Eq. 9 is
related to P (c|Vmax) through simple parameter marginal-
ization:

P (c|Vmax) =

∫
dXhaloP (c|Vmax, Xhalo)P (Xhalo|Vmax),

(10)
where P (Xhalo|Vmax) is tabulated directly from the sim-
ulation.

The left hand side of Eq. 10 is related to the ob-
served color distribution by the defining equation of age
matching:

P (c|Vmax(M∗))
dVmax

dM∗
= PDATA(c|M∗). (11)

Putting the above pieces together, we have

PDATA(c|M∗)
dM∗

dVmax
=

∫
dXhaloP (Xhalo|Vmax) (12)

× P (c|Vmax, Xhalo).

The left hand side of Eq. 12 is tabulated directly from the
data; the first term in the integrand on the right hand side

of Eq. 12 is determined directly from the simulation. The
quantity P (c|Vmax, Xhalo) is the fundamental quantity
we wish to determine. We do so in an exactly analogous
fashion to standard abundance matching.

First we define the following two conditional cumu-
lative abundances:

Nh(> Xhalo|Vmax) =

∫ ∞

Xhalo

dX ′
halo

(
dnh

dX ′
halo

)
|Vmax

Ng(> c|M∗) =

∫ ∞

c

dc′
(
dng

dc′

)
|M∗ , (13)

where (dnh/dX
′
halo)|Vmax is the abundance of halos

with circular velocity Vmax as a function of Xhalo, and
(dng/dc′)|M∗ is the abundance of galaxies with stellar
mass M∗ as a function of color. In the absence of scat-
ter, P (c|Vmax, Xhalo) is simply a delta function centered
at the map c(Vmax, Xhalo), which is computed by finding
the zero of

FVmax,Xhalo(c) ≡ Nh(> Xhalo|Vmax)×
dVmax

dM∗
(14)

− Ng(> c|M∗).

The technique described above is very general; in
principle it can be applied any observable property of
galaxies, and can be implemented with any halo prop-
erty. Since the model we study in this paper uses Xhalo =
zstarve as the second halo property, which is primarily
driven by formation time, we refer to this particular im-
plementation as age matching. We discuss other possible
implementations and applications of the CAM formalism
in § 7.

5 PREDICTIONS

We evaluate the success of our model by computing
statistics of our mock galaxy sample in a directly anal-
ogous fashion to the manner in which the correspond-
ing statistics are computed in observational data. We de-
scribe our technique for computing projected clustering
of mock galaxies in § 5.1, the mock galaxy-galaxy lensing
in § 5.2, and mock galaxy group statistics in § 5.3.

5.1 Projected Clustering of Mock Galaxies

The projected clustering of galaxies wp(rp) quantifies the
probability in excess of random that a pair of galaxies
in a sample will have line-of-sight separation less than
πmax and be found at projected separation rp. Suppose
that Ng galaxies are randomly distributed throughout
a cubical box of side length Lbox. Then in a randomly
placed cylindrical annulus of length πmax, and with inner
and outer radii rmin and rmax, respectively, the expected
number of galaxy pairs is

Np,ran =
1
2
Ng(Ng − 1)(πr2max − πr2min)πmax/L

3
box.

By directly computing Np, the actual number of galaxy
pairs in our mock that satisfy this line-of-sight and pro-
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6 Hearin et al.

jected distance criterion,6 we compute 1 + wp(rp) =
Np/Np,ran. We use πmax = 40 h−1Mpc to be consistent
with the measurements made for our observational sam-
ples.7 We estimate errors on wp by jackknifing the octants
of the simulation box.

5.2 Mock Galaxy-Galaxy Lensing

We compute the mock galaxy-galaxy lensing signal ∆Σ
from the particle data as follows. For every galaxy in
each mock, we compute the two-dimensional projected
mass density profile in 25 logarithmic bins in radius from
0.2 to 2.0 h−1Mpc. The density from 0 to 0.2 h−1Mpc
is recorded as well for computing ∆Σ later. The two-
dimensional mass profile is computed from a projec-
tion over a length of 100 h−1Mpc along the z-axis of
the simulation box (i.e., from 50 h−1Mpc behind the
galaxy to 50 h−1Mpc in front of the galaxy). With the
two-dimensional density profiles, we then compute ∆Σ
around each galaxy for the ith bin as

∆Σi =
1

πR2
i−1,max

i−1∑

n=0

ΣnAn − Σi , (15)

where Σi is the surface density of mass in the ith bin
and Ai = π(R

2
i,max−R2

i,min) is the area of each annulus.
Here Rmin,i and Rmax,i are the minimum and maximum
radius of the ith annulus. The errors on ∆Σ are computed
via 27 jackknife regions over the simulation volume.

The procedure for computing ∆Σ defined above is
approximate for several reasons. First, in the limit that
each galaxy is in a thin lens at the galaxy’s redshift in
both the simulation and the data, the procedure defined
above is an exact match to how ∆Σ is computed from ob-
servational data. However, in reality, a given galaxy is not
in a thin lens, but is instead in an extended mass distribu-
tion. Thus along the projected line-of-sight, the lensing
kernel will supply an additional line-of-sight dependent
weight. The exact form of this weight depends in detail
on the redshift distributions of the lenses and sources in
the observational samples. Given that the galaxy-matter
correlation function falls off quickly as a function of ra-
dius, we have chosen to completely neglect this effect.
Second, the projection along the line-of-sight should be
done over a full light cone. However, again because the
galaxy-matter correlation function falls off quickly as a
function of radius, we have fixed the line-of-sight pro-
jection length to 100 h−1Mpc (see also Leauthaud et al.
2011). Finally, note also that the box length for Bolshoi
is only 250 h−1Mpc and that the simulation volume is
periodic. Thus particles in the volume can be separated
by at most half the box length, 125 h−1Mpc, and so we
can project the mass distribution only over at most this

6 We employ the distant observer approximation, using the
z−direction in the simulation to compute line-of-sight dis-
tances, and the x− y plane to compute projected distances.
7 In computing the actual pair counts in the simulation, we
first place the galaxies into redshift space, though we find that
this has a negligible effect on the projected correlation func-
tion.

length. Thus our chosen projection length is a compro-
mise between the need to make it as large as possible in
order to match the data accurately and the constraints
of the given simulation volume.

5.3 Group Identification of Mock Galaxies

To parse the M9.8
∗ mock galaxies into groups, we use

the simulation z−coordinate to place mock galaxies into
redshift-space, convert x − y coordinates into RA and
DEC, and then apply the same group-finding algorithm
on the mock galaxies as we applied on the SDSS galaxy
sample. In this way, our mock galaxy group sample is sub-
ject to the same systematic errors as our SDSS groups.
For further details concerning group-finding in a mock,
we refer the reader to Hearin et al. (2012).

6 RESULTS

In this section, we present our main results. In § 6.1 we
show that our age matching model predicts the correct
relative colors of central and satellite galaxies. Then in
§ 6.2 we demonstrate the accuracy of our base M9.8

∗ SDSS
mock catalog at reproducing new SDSS measurements of
the projected galaxy 2PCF as a function of stellar mass,
explicitly showing that our mock catalog naturally inher-
its the successes of traditional abundance matching. We
then compare the age matching predictions to SDSS mea-
surements of the 2PCF split into red and blue samples.
We also investigate the success of our age matching model
with new SDSS galaxy-galaxy lensing measurements in
§ 6.3, a statistic which was not explored in Paper I. As is
done for clustering, we consider the lensing signal, ∆Σ, as
a function of stellar mass, and then for distinct red and
blue subsamples. We also test the success of our model
against statistics measured from the M9.8

∗ SDSS group
catalog in § 6.4. Finally, in § 6.5 we dissect zstarve to exam-
ine exactly how halo mass assembly is linked to shaping
the colors of galaxies within age matching. This includes
a discussion of alternative models that have been tested
and the power of the more general CAM formalism.

6.1 Central and Satellite Colors

As discussed in § 4.2, our model correctly reproduces the
color distribution PSDSS(c|M∗) by construction as seen
in the top left panel and bottom row of Fig. 1. However,
the information about satellite/central designation does
not inform the colors we assign to the galaxies. Specifi-
cally, our color assignment only uses the property zstarve
and PSDSS(c|M∗) to assign colors to the mock galaxies
but does not distinguish between centrals and satellites.
Thus, by no means is it guaranteed that our color PDFs
will be correctly predicted when conditioned on some
other galaxy property beyond stellar mass. The top mid-
dle and right panels of Fig. 1 clearly demonstrate the suc-
cessful prediction of age matching for the separate color
PDFs of central and satellite galaxies. In our model, cen-
tral and satellite galaxies of the same stellar mass have
different color distributions simply because host halos and
subhalos have different MAHs.
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Figure 1. Galaxy color probability distribution functions (PDFs) from our mock catalog as compared to those measured in the
SDSS galaxy catalogs. The g− r color PDFs of our mock galaxies are in exact agreement with the data (black dotted histograms)
for the all galaxy sample (top left panel) and all three stellar mass threshold samples (bottom row), by construction. Our color
assignment to galaxies is blind to central/satellite designation, thus the PDFs measured from the M9.8

∗ group catalog, as seen in
the center and right panels of the top row, demonstrate the highly successful predictions of age matching.

6.2 Galaxy Clustering

In the top row of Fig. 2, black solid curves with gray error
bands (see section § 5.1 for a discussion of error estimates)
show the projected 2PCF measured from our mock cat-
alog for all galaxies predicated on traditional abundance
matching. The excellent agreement with the SDSS data
points (filled black circles) illustrates that galaxies have
been properly assigned to halos as a function of stellar
mass. However, notice there is a slight under-prediction
from abundance matching on small scales for the M10.2

∗
sample.

We now turn to the bottom row of Fig. 2 to inves-
tigate the success of age matching at predicting color-
dependent clustering. Red and blue filled circles in all
panels represent the red and blue galaxy populations
from SDSS, respectively. Red and blue solid curves are
the age matching model predictions. The M9.8

∗ and M10.6
∗

predictions for the color-dependent clustering are in ex-
cellent agreement with the data at all scales. However, as
noted above, there is a slight under-prediction of abun-
dance matching on small scales (rp ! 500h−1kpc) for the
M10.2

∗ sample and this propagates through to the color
split (bottom, center panel), though the relative color

split of the model agrees well with what is dictated by
the data.

We emphasize that our age matching model has re-
quired no parameter fitting to achieve the agreement be-
tween the predicted and measured color-dependent clus-
tering. Our algorithm for color assignment has no explicit
dependence on halo position; the clustering signal in our
mock simply emerges as a prediction of age matching. The
success of our model is compelling given the simplicity of
age matching, and the more general CAM formalism.

6.3 Galaxy-Galaxy Lensing

While the 2PCF encodes rich information about the
galaxy-halo connection, measurements of galaxy-galaxy
lensing have been shown to break degeneracies between
galaxy-halo parameters that are present when model con-
straints are derived from clustering measurements alone
(e.g., More et al. 2013). To that end, in Fig. 3 we com-
pare our model prediction to new measurements of the
stellar mass- and color-dependent galaxy-galaxy lensing
signal, ∆Σ. As was the case for the 2PCF comparison, we
accurately predict ∆Σ at the abundance matching level
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Figure 2. Stellar mass- and color-dependent clustering as predicted by our age matching formalism. Top Row : The projected
correlation function (multiplied by rp) predicted by our model (black solid curves) as compared to the clustering of three SDSS
stellar mass threshold samples: log10(M∗) > [9.8, 10.2, 10.6]. Bottom Row : Correlation functions split by color for red (blue) mock
galaxies shown with red (blue) solid curves. Red (blue) points show the clustering of red (blue) SDSS galaxies. Solid bands in
each panel show the error in our model prediction as described § 5.1. The log10(M∗) > 9.8 and log10(M∗) > 10.6 predictions for
the color-dependent clustering are in excellent agreement with the data at all scales. The slight under-prediction of abundance
matching on small scales for the log10(M∗) > 10.2 sample (top, center panel) propogates through to the color split (bottom, center
panel), though the relative color split is captured by the model.

(black solid curves versus SDSS solid black data points
in the top row), though the amplitude of the model pre-
diction appears slightly boosted relative to the data for
all three stellar mass thresholds. Red and blue filled cir-
cles in all panels represent the red and blue SDSS galaxy
populations, respectively, while red and blue solid curves
are the model predictions according to age matching. The
separation in ∆Σ between red and blue samples is pre-
dicted reasonably well, excepting only blue samples on
small scales, where measurement errors become large.

6.4 Galaxy Group Environment

In addition to wp(rp) and ∆Σ, we employ a group-finder
to test how well our model predicts the scaling of central
and satellite color with host halo mass. As our proxy for
halo mass we use MBCG

∗ , the stellar mass of the group’s
central galaxy. In Fig. 4, we show the mean g − r color
of group galaxies as a function of MBCG

∗ . We show the
results for central galaxies and satellites from left to right,
respectively. The dashed line is the mean g − r color of

the mock galaxies in a given MBCG
∗ bin. The solid gray

region shows Poisson errors on the mean color in each
bin.

There is excellent agreement between mock and ob-
served satellite galaxy color. This is also true for central
galaxies excepting some slight tension at the low MBCG

∗
end. Again, we emphasize that we have not tuned any
parameters in our model. The successful prediction for
central and satellite colors naturally emerges from the
age distribution matching formalism. Specifically, at fixed
stellar mass, the colors of our mock galaxies are drawn
from the same color PDF, PSDSS(c|M∗), regardless of sub-
halo or host halo designation. Moreover, our color assign-
ment algorithm takes no explicit account of subhalo or
host halo mass. Therefore, our model’s correct prediction
for the environmental-dependence of satellite and central
galaxy colors arises purely due to the environmental de-
pendence of Vmax and zstarve of dark matter halos and
subhalos.
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Figure 3. ∆Σ as a function of stellar mass and color. As was shown for the projected clustering in Fig. 2, the top row is the
abundance matching result for all galaxies and the bottom row shows the predicted color split from our age matching model (red
and blue solid curves) as compared to new SDSS galaxy-galaxy lensing measurements. Derived errors for the data and the model
are described in § 2.4 & § 5.2, respectively.
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Figure 5. The fractional contribution to zstarve from the three charateristic epochs in the mass accretion history of halos that
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and more galaxies naturally receive a zstarve value based on zchar as we go to higher central and satellite stellar masses, zacc makes
almost no contribution at any stellar mass for satellites. A seen in Fig. 6 and described in § 6.5 this is due to the strong correlation
between the zform and zacc.

6.5 Fractional Contributions to zstarve

As laid out in § 4.2, a halo’s zstarve value is determined
by whichever of the following three events happens first
in its MAH: (1) the epoch a halo accretes onto a larger
halo, zacc (this of course only pertains to satellite galax-
ies), (2) the epoch a halo reaches a characteristic mass of
1012h−1M", zchar, and (3) the epoch a halo transitions
from the fast- to slow-accretion regime, zform. Figure 5
shows the fractional contribution to zstarve from zform
(star symbols), zchar (filled circles) and zacc (triangles)
as a function of galaxy stellar mass. Gray bands are the
Poisson errors for a given stellar mass bin.

First consider central galaxies in the left panel; zform
(solid magenta curve) dominates the fractional contri-
bution at ∼ 100% up to log10(M∗) = 11.0 (roughly
L∗ galaxies), and preciptiously declines to ∼ 50% at
log10(M∗) = 11.5. The halo property zchar was originally
introduced into age matching because older halos receive
redder colors, and so without zchar, high mass galaxies
(e.g., BCGs residing in clusters) would be assigned col-
ors that are too blue since their halos are still forming to-
day. As discussed in Paper I, our phenomenological model
forms no particular hypothesis for the particular physical
mechanism(s) that influence star formation within mas-
sive halos. We simply posit that there exists a character-
istic halo mass above which star formation becomes inef-
ficient. Physically, this presumption is well-motivated by
hydrodynamical simulation results that implement AGN
feedback, which can have a dramatic effect on star for-
mation (Shankar et al. 2006; Teyssier et al. 2011; Mar-
tizzi et al. 2012) 8. We have considered a form of the
model in which zchar is neglected, and for stellar mass-

8 See also Fang et al. (2013) for an observational investigation
of bulge-driven quenching.

based galaxy samples we find that the effects on all of the
galaxy statistics are minimal. We also considered a larger
2PCF stellar mass threshold log10(M∗) > 11.0, and while
the color split became more pronounced with the inclu-
sion zchar in the model, sample variance errors in Bolshoi
were too large to quantitatively distinguish between mod-
els with and without zchar. However, we note that zchar
was crucial for accurately predicting the brightest 2PCF
luminosity bin in Paper I.

We see similar trends to the above for the satellite
galaxies plotted in the right panel. Due to the rarity of
massive objects, combined with the effects of tidal mass
loss, satellite galaxies rarely achieve halo masses large
enough for zchar to make an appreciable contribution to
zstarve (∼ 30% at maximum).

The most dramatic result of this figure is the negli-
gible contribution from zacc, which is ∼ 0.1% at all stel-
lar masses. While striking, this cannot be directly inter-
preted as a lack of importance of post-accretion physics
on shaping the colors of satellite galaxies because the
accretion time and formation time of subhalos are corre-
lated. This correlation can be directly seen in Fig. 6, in
which we plot the lookback time to the epoch a subhalo is
formed against the lookback time at which it is accreted.
We show the mean tform in bins of tacc for satellites in
several different bins of stellar mass, with the gray band
illustrating the Poisson error on the mean for the small-
est mass sample. Figure 6 demonstrates that the subhalo
properties zacc and zform are correlated with high statis-
tical significance.9 Thus, even though neglecting zacc in
our model does not affect our predictions, correlations be-
tween satellite quenching and accretion time nonetheless
emerge from our model due to the connection between

9 Note that although the mean trend is strong, there is
roughly ∼ 0.5Gyr of scatter in tform at fixed tacc.
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the epoch of accretion and the epoch of formation. We
explore this point in detail in a follow-up paper focusing
squarely on satellite quenching in our model.

We have chosen to maintain the exact formalism laid
out in Paper I, with zstarve ≡ Max {zacc, zchar, zform}.
However, we note that in light of the above discussion,
we have tested a simple model with zstarve = zform and
find that it performs on par with the more complicated
model of Paper I. We have also considered alternative
proxies for halo age beyond zform that arise often in the
literature, such as the redshift a halo attains 4% of its
present day mass, z4%, or the redshift it attains half of its
present day mass, z1/2. A model based on z4% works just
as well as our model, which should not be surprising since
the 4% criterion has already been shown to give a very
similar estimate of the epoch a halo transitions from the
fast- to slow-accretion regime (Zhao et al. 2009). While a
model based on z1/2 correctly predicts the general trends
of all of the galaxy statistics we tested, the results are in
significantly worse quantitative agreement. This is inter-
esting in light of recent results on pseudo-evolution that
imply z1/2 is a poorly motivated physical proxy for halo
age: by the time a typical Milky Way halo attains half
of its present day mass, its accretion rate is almost en-
tirely due to the changing background mean density, to
which we see no plausible connection to galaxy evolution
(Diemer et al. 2013). Motivated by the prevalence of al-
ternative approaches to the galaxy-halo connection that
rely exclusively on host halo mass, we also considered a
model that rank-ordered on the present day mass of the
host halo instead of zstarve; this model made clustering
predictions that are grossly discrepant with the data.

The flexibility of the CAM formalism makes explo-
ration of alternative formulations completely straightfor-
ward. In the end, zstarve may not be the fundamental halo
variable that correlates with color; all that can be said
from the diverse success of our model is that, whatever
this truly fundamental halo property is, it must correlate
strongly with zstarve. We relegate a more exhaustive ex-
ploration of alternative CAM implementations as a task
for future work, and comment further on this effort in
§ 7.

7 DISCUSSION

7.1 Physical Motivation of Age Matching

The physical picture suggested by the myriad successes of
abundance matching is that the depth of a halo’s gravita-
tional potential well (Vmax) is the single most important
quantity in the evolution of a galaxy. The use of zform in
age matching takes this picture seriously. The potential
well of a halo is primarily built during the early stage of
fast accretion. After the fast-to-slow accretion transition,
mass accretes onto the halo from the outside-in, and halo
mass can substantially increase without changing Vmax

(Wechsler et al. 2002; Zhao et al. 2003). Even on an in-
dividual halo basis, this fact about structure growth in
CDM is readily apparent by visual inspection of the as-
sembly history of dark matter halos. Thus the use of zform
in age matching is physically motivated by the expecta-
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Figure 6. Plot of the lookback time to the epoch a subhalo
is formed, tform, versus the lookback time at which the sub-
halo is accreted, tacc. Different curves show results for different
bins of satellite stellar mass, with the gray band showing Pois-
son errors for the lowest mass sample. While Fig. 5 showed the
negligible contribution of zacc in our model, this figure demon-
strates that satellite quenching in our model is nonetheless
connected to accretion time due to the tform–tacc correlation
in CDM structure formation.

tion that stellar mass build-up slows down once the depth
of the central potential is in place, so that galaxies with
older stellar populations will tend to be found in halos
with potential wells that formed earlier.

7.2 The Simplicity of CAM

The successes of CAM are particularly interesting in the
context of other approaches to modeling the galaxy-halo
connection. First consider the commonly-used Halo Oc-
cupation Distribution (HOD: e.g., Peacock & Smith 2000;
Seljak 2000; Scoccimarro et al. 2001; Berlind & Weinberg
2002; Cooray & Sheth 2002; Zheng et al. 2007) formalism
(or the closely related conditional luminosity function,
Yang et al. CLF: e.g., 2003; van den Bosch et al. CLF:
e.g., 2007). The central quantity in the HOD is P (N |M),
the probability that a (host) halo of mass M hosts N
galaxies of some type. The HOD formalism was devel-
oped over ten years ago, and there are many notewor-
thy successes of this approach to modeling galaxy color
and/or star formation rate (e.g., Skibba & Sheth 2009;
Zehavi et al. 2011).

In one respect, the HOD approach is simpler than
ours: in the HOD, host halo mass is the only halo prop-
erty that governs galaxy occupation statistics, whereas
CAM models treat halos as objects with two properties
(in the case of age matching, Vmax and zstarve). On the
other hand, HOD models typically require fitting for a
comparatively large number of free parameters in order
to model the color dependence of the spatial distribution
of galaxies. As an example, consider the HOD model ex-
plored in Zehavi et al. (2011). For every color-selected
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luminosity-threshold sample, this model requires fitting
for five free parameters in a maximum likelihood analysis.
Thus in order to model the clustering at three different
thresholds for both red and blue galaxy samples, this ap-
proach requires fitting for a total of 30 free parameters,
since each time the sample changes, new fits are required.

As another example, consider the HOD model em-
ployed in Tinker et al. (2013). Using a standard set of
parameters for the HOD together with parameters de-
scribing the stellar-to-halo mass mapM∗(Mh), active and
passive galaxy populations are modeled seperately and
fit to the observed stellar mass function Φ(M∗), angular
clustering w(θ), and galaxy-galaxy lensing signal ∆Σ(R).
This approach to the galaxy-halo model requires 27 free
parameters at each redshift slice.

Semi-analytic models (SAMs) are an alternative to
the phenomenological HOD- and CLF-type modeling.
The distinct advantage of the SAM approach is that
these models have the potential to yield constraints on
the actual physical mechanisms responsible for galaxy
evolution, since SAM models ostensibly parametrize the
litany of baryonic processes that impact star formation
and quenching. However, SAMs typically require a large
number of finely tuned parameters to describe dynami-
cal evolution of subhalos and the vast baryonic processes
of galaxy formation (White & Frenk 1991; Kauffmann
et al. 1999; Cole et al. 1994; Somerville & Primack 1999;
De Lucia & Blaizot 2007; Guo et al. 2011). At present,
there is no consensus in the literature on the correct SAM
formulation, since quantitative comparisons between dif-
ferent models are difficult to conduct due to the inherent
complexity of this approach.

By contrast, in our age matching implementation of
CAM, we only require three free parameters: (1) scatter σ
in the relation between Vmax and M∗, (2) the logarithmic
slope S defining the transition from the fast-to-slow ac-
cretion regime of halo growth, and (3) the characteristic
halo mass Mchar where star formation becomes inefficient
(recall that zacc proved unnecessary). Once these three
parameters are fixed, the full continuous distribution of
colors (rather than a binary red/blue designation) is pre-
dicted for all stellar mass thresholds, since we implictly
use the color PDF directly from the data. Moreover, the
exact same parameters work equally well for either stellar
mass- or luminosity-threshold samples; as we will show in
a companion paper to this one, the same holds true when
using CAM to predict star formation rates rather than
color. In this sense, our assumption that old halos host
old galaxies results in a dramatically simpler model than
conventional implementations of the HOD.

Though this simplification is tantalizing, it remains
to be seen whether the model we have presented in this
paper passes a χ2 goodness-of-fit criterion for the pro-
jected clustering and galaxy-galaxy lensing signals in
SDSS. However, we have not yet fit for our three param-
eters in a maximum likelihood analysis. We have simply
chosen appropriate values from the literature and kept
these fixed throughout this paper. Given how successful
our model has proven to be without varying this small
number of parameters, we consider it plausible that we
will be able to achieve a good fit to the data once we
conduct a Monte Carlo Markov Chain exploration of the

CAM parameter space. We consider this effort beyond
the scope of the present work, though we intend to con-
duct this analysis in future work, both at low- and high-
redshift.

7.3 Application to Star Formation
Measurements

Though g − r color is generally a good indicator of on-
going star formation in a galaxy, the correspondence is
only approximate. For instance, star-forming galaxies can
often appear red due to the presence of gas and dust
(Maller et al. 2009; Masters et al. 2010; Wetzel et al.
2012). Additionally, the timescales relevant to, for exam-
ple, Hα indicators of star formation rates (SFR) are sig-
nificantly shorter than timescales impacting g − r color,
and so it is reasonable to be skeptical that age match-
ing will fail when connecting present day star formation
rate to zstarve, since this halo property typically occurs
in the very distant past. We show in a companion paper
that this is not the case: the SFR predictions of our age
matching implementation of CAM are equally successful
as the predictions we show here. Thus a model with just
three parameters, with no change to their values, cor-
rectly connects dark matter halos to galaxies of a given
stellar mass, r-band luminosity, g-band luminosity, and
SFR.

7.4 Assembly Bias Degeneracies

One important step in the development of CAMmodeling
will be to develop a better understanding of the degenera-
cies between CAM and the HOD. Evidently, both classes
of models can effectively describe the color-dependence
of the stellar mass function, two-point clustering, and
galaxy-galaxy lensing signal, yet these models are predi-
cated upon markedly different assumptions. In the HOD,
knowledge of halo mass is sufficient to statistically char-
acterize all properties of the galaxies populating a halo;
in CAM, galaxy color correlates strongly with halo age
at fixed halo mass; clearly, these are mutually incompat-
ible assumptions. We briefly note here that models based
only on host halo mass are unable even in principle to
reproduce galactic conformity: the observation that, at
fixed host mass, group systems with a blue central tend
to have a bluer satellite population, and conversely for
red centrals and satellites (Weinmann et al. 2006). This
is a natural feature of age matching, since host halos and
subhalos collapse from and co-evolve in the same over-
dense patch of the cosmic density field. We explore this
fully in a future paper.

The dependence of galaxy occupation statistics upon
some halo property besides mass generically goes by the
name of assembly bias; Zentner et al. (in prep.) recently
completed a first step towards understanding the degen-
eracies between HOD parameters and the assembly bias
predicted by CAM-type models; in light of the simultane-
ous success of these very different approaches to galaxy-
halo modeling, we consider a comprehensive effort to the-
oretically model and observationally constrain assembly
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bias to be necessary in order to truly understand the con-
nection between galaxies and dark matter halos.

7.5 Future Work

Even within the CAM framework there exists degenera-
cies between different implementations of the formalism.
In § 6 we provide examples of how different definitions of
zstarve can produce models of comparable success to our
fiducial model. For example, age matching models that
either account for or entirely ignore the post-accretion
history of satellite galaxies make nearly identical predic-
tions. This suggests that too much emphasis may have
been placed on the role of post-accretion physics in satel-
lite quenching. However, since zform and zacc are corre-
lated, the success of models which do not include zacc can-
not be directly interpreted as evidence ruling out contri-
butions to satellite quenching from intra-host processes.

Additionally, as we showed in Fig. 2 the influence
of Mchar only becomes significant for stellar masses that
contribute minimally to the clustering in any of our sam-
ples. Thus the mass range of our sample apparently does
not require invoking a cutoff in star formation efficiency,
as discussed in § 6. In the interest of continuity with Pa-
per I we have made no alterations to our definition of
zstarve, though we will return to this issue in follow up
work in which we explore more exhaustively the variety
of different CAM implementations

The model studied in Masaki et al. (2013) is in
essence a CAM model in which the conditional abun-
dance is performed with halo central density rather than
zstarve. It is not particularly surprising that both models
are effective, because in age matching zstarve is primar-
ily governed by halo concentration, which is of course
strongly correlated with central density. On the one
hand, our age matching model is physically motivated
by the expectation that older halos tend to host galaxies
with older stellar populations, while we see no plausible,
comparably direct physical interpretation of the central
density-based model. On the other hand, the simulta-
neous success of zstarve- and central density-based CAM
models implies that caution is required before any par-
ticular implementation of CAM can be considered to be
truly fundamental.

Despite these systematic uncertainties, what is quite
clear from our results is that the CAM formalism pro-
vides a framework for the galaxy-halo connection that
makes remarkably accurate predictions for a rich vari-
ety of observational data. We consider the preliminary
success of this framework to be an extremely promising
indication that the cosmic history of star formation in
galaxies admits a simple, elegant theoretical description.

8 SUMMARY

We conclude by summarizing our primary results and
conclusions:

1. We have made new DR7 SDSS measurements of
the projected two-point correlation function, and galaxy-

galaxy lensing signal, as a function of stellar mass and
g − r color. Our measurements appear in Tables 1-6.

2. We use these new measurements to test the age
matching formalism introduced in Hearin & Watson
(2013) (Paper I), finding in all cases that our model per-
forms quite well; the level of agreement is particularly
remarkable considering the simplicity of the model, and
that we have made no alternations to the values of the
model parameters used in Paper I.

3. Additionally, we employ a galaxy group-finder to
demonstrate that our model correctly predicts the colors
of central and satellite galaxies. Indeed, the scaling of
satellite galaxy colors with host halo mass is in essentially
perfect agreement with SDSS data.

4. We present a very general formalism for model-
ing the galaxy-halo connection called Conditional Abun-
dance Matching (CAM), of which age matching is a spe-
cific example. This flexible theoretical framework permits
direct investigation of correlations between any galaxy
property and any halo property.

5. We make publicly available a mock
galaxy catalog constructed from our model at
http://logrus.uchicago.edu/∼aphearin.
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